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On the optimal direction of short metal 
fibres in brittle matrix composites 
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In the composite materials considered in this paper the fibres bridge the cracks in 
the matrix and control their propagation. The ability to sustain large cracks before 
complete failure is of primary importance in several applications. This quality formu- 
lated as the fracture energy is chosen as an objective function for optimization. Five 
different components of the fracture energy are expressed by simplified formulae, 
derived from the assumed behaviour of fibres in the cracked matrix. The angle of 
the orientation of the parallel fibres system is the only design variable. The opti- 
mization problem is solved by derivation with respect to that angle. An element 
subjected to axial tension is considered for the maximum of fracture energy and the 
optimum angle of fibres is determined. Several examples for steel fibres reinforced 
cements are calculated and discussed. The proposed approach may be further 
developed using adequate formulae and assumptions for various kinds of fibre 
reinforced materials. 

1. Introduct ion  
In materials engineering the internal structure 
and the composition of a material are designed 
to fulfil preassigned requirements and con- 
ditions. For brittle matrix composites, in which 
fibres should control crack development, the 
important mechanical property is the fracture 
toughness. This is the ability of a material to 
resist fracture by crack propagation. The frac- 
ture toughness is often defined as proportional 
to the area under the force-displacement of 
stress-strain diagram. 

The optimization approach is aimed at objec- 
tive methods of material design, according to 
precisely defined criteria and conditions. 
Already Mullin and Mazzio [1] have attracted 
attention in the optimization of composite 
behaviour during the fracture process. Such an 
approach seems particularly rational for cement 
based matrices reinforced with short steel fibres. 
These materials are of growing importance in 
civil engineering and building structures. 

In this paper an optimization problem is 

formulated and solved in which the amount of 
fracture energy absorbed at failure is considered 
as an objective function and its maximum is 
sought. In several applications this may be con- 
sidered, with good practical reason, as an appro- 
priate measure of the material quality. 

The fibre direction is the only variable and its 
optimal value represents the solution, which is 
discussed for various sets of parameters. The 
role of the fibre orientation was considered by 
Morton who showed in [2] that the trivial case of 
all fibres parallel to the principal tensile stresses 
is not an optimal solution. This conclusion was 
corroborated by photoelastic observations and 
other tests published by Hing and Groves [3], 
Harris et al. [4] and Morton and Groves [5]. 

The calculation of the fracture energy based 
on simplifying assumptions was proposed and 
experimentally verified on notched steel fibres 
reinforced cement beams tested by Brandt [6]. 
Similar formulae were used later in [7] for 
an optimization problem which is further 
developed below. 
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Figure i Fibre reinforced concrete element subject to tension before and after the crack opening. 

2. Optimizat ion of the set of 
parallel fibres orientation in an 
element subject to axial tension 

An element of  steel fibre reinforced cement 
subject to axial tension is considered. The ele- 
ment may form a part of  a structure or of a layer 
for which tensile forces are of  major importance. 
For  structural elements subject to other loading 
states, the behaviour under tension may also be 
considered as a severe but appropriate measure 
of utility. 

The reinforcement is composed of a single 
system of parallel short steel fibres and 0 is its 
angle with respect to the direction of the tensile 
loading. It is assumed that in a neighbouring 
layer of the reinforcement the respective angle is 
- 0 .  The reinforcement being symmetric, only 
one form of rupture is admissible: a single crack 
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perpendicular to the load direction (see Fig. 1). 
The problem of multiple cracking should be 
considered separately. 

The objective function is the amount of 
energy absorbed to produce a crack in the ele- 
ment and to open it to a certain width, v0. This 
crack opening is therefore considered as the final 
fracture of  the element. 

The following components of  the fracture 
energy are taken into account: 

(a) debonding of  matrix from the fibres which 
cross the crack, 

(b) pulling of  debonded fibres out of the 
matrix, the fibre displacement is equal to the 
crack width, 

(c) passing of the fibres across the crack. 
To simplify formulation of the problem and its 
solution, it is assumed that these energy 
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Figure 2 Bond stress as function 
of displacement in a pull-out test. 

components are mutually independent. It is 
supposed also that the following components 
may be neglected: 

(i) creation of  a new surface of  the crack in 
the matrix, because it is independent of  the influ- 
ence of the fibres, 

(ii) strain elastic energy in the element, 
because it is absorbed before the crack appears 
and its amount  depends mostly on the volume of 
the element itself. 

By this way a simplified mechanism is created 
which is described below analytically. This 
mechanism may be modified in the future, 
according to new concepts or test results, which 
are not available at present. 

In all considerations here, the properties of 
cement matrices and steel fibres are taken into 
account. It is possible, however, to generalize the 
main concept of  the presented problem for 
larger groups of materials, e.g. plaster or 
polymer based matrices with glass or poly- 
propylene fibres. 

3. Calculations of the components 
of the f racture energy 

3.1. Energy due to debonding of fibres 
from the matrix 

The energy is proportional to the area corre- 
sponding to the elastic displacement in a typical 
simplified diagram obtained in a pull-out test, 
shown in Fig. 2. It is expressed by the formula 

/rtD 
W 1 ~- N 0 COS20 ~ "Cma x V e (1)  

where No is the number of fibres per unit cross- 
section perpendicular to the fibres, D and l are 
the diameter and the length of  a fibre, the maxi- 
mum bond stress Tmax and crack opening ve 
corresponding to elastic displacement of fibre 
with respect to matrix are indicated in Fig. 2. 
No cos 0 is the number of  fibres per unit area of  
crack surface. Another cos 0 in the formula 
comes from the projection of the displacement 
on the fibre direction. The force in a fibre is: 
l / g D z m a x .  

Here, the pull-out length is assumed to be 
equal to l/4 as an average of  all fibre lengths 
between 0 and I/2. 

3.2. Energy due to pulling fibres out of 
the matrix 

The pulling-out of  fibres against the interfacial 
friction z along the fibre length is considered. 
The friction appears in the cylindrical crack 
around the deboning fibre (Fig. 2). The energy 
is proportional to the area under the second 
part of the diagram, between the displacements 
ve and %. The elementary energy, d W2, is 
expressed by dW2 = ~TD(I/4- v)dv. After 
multiplication by the number of fibres and after 
integration, the final formula is 

 0cos 0 :0o  (   )do 
= No cos20DT~ (2) 
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Figure 3 Plastic deformation of a fibre passing across a crack at an angle 0. 

The concept of  this formula was taken from [4] 
and [8] and it was developed in [6]. 

3.3. Energy due to fibres passing across 
a crack 

Three main phenomena are considered separ- 
ately here: 

(a) plastic deformation of the fibres due to 
shear stress, 

(b) crushing of  the matrix in compression 
near the exit points of the fibres, 

(c) complementary friction between the fibres 
and the matrix due to local compression at the 
bend. 

These phenomena are based on proposals 
published by Aveston and Kelly [9]. 

Plastic deformation of the fibre is shown 
schematically in Fig, 3. According to the 
proposal in [8] the energy necessary to deform a 
fibre is proportional to the fibre volume between 
the crack edges, to the shear yield stress Zr of steel 
and to the angle 0. Therefore the formula is 

~D 2 
I4/3 = No cos 0 T Ovorr (3) 

where (~/4)D%o is the fibre volume subject to 
yielding, Zr is considered to be equal to a half of 
the tensile yield stress, ff  and No cos 0 is the 
number of  fibres. 

Crushing of  the matrix which is locally com- 
pressed may be represented by Fig. 4. The 
energy is approximately proportional to the 
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matrix strength and to the volume of the crushed 
matrix on both sides of the crack. The radius 
r 0 may be calculated from the approximate 
relation 

fr (cos20"~ '/2 
r0 = D fm \si--ff- J 

where ff and fm are the fibre and the matrix 
strength and a is the coefficient which should 
modify the value of  r o to adjust it to the results 
of  observations. Then: 

a r e a s  = �89 0) 

volume V = 1-D3(o;ff'~ 2 
\ fro/ 

cos20 
x ~ (tan 0 - 0)q. 

Finally, the formula for the corresponding 
energy component is 

= 

cos 0  
x c o s 2 0 -  0 s inOJ  (4) 

taking into account two crushed zones of matrix 
on both sides of the crack. The coefficient t/ 
should correct the approximate formula for the 
matrix volume. 

The complementary friction is produced by 
the force BA shown in Fig. 5 and may be 
approximately calculated as 2P sin 8/2, where P, 
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Figure 4 Crushing the matrix 
compressed by a fibre. 

the force which pulls out the fibre from the 
matrix is composed of  two parts 

P = P 0 + A P .  

Force P0 is already taken into account in W2 and 
the additional force AP may be expressed by 

0 
AP = ~ l~D$2 sin 

where ~b is the friction coefficient between fibre 
and matrix. 

Therefore the energy is 

0 
W5 = No~l~D(ovo sin ~ cos 0 (5) 

where both sides of  a crack are considered. 
Total fracture energy is, according to the 

initial assumptions, equal to a sum of  these five 
components: 

5 

W0 'D = ~ W,, (i = 1 , 2 , . . . , 5 ) .  (6) 
1 

I P 

I 

i / I '  
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S 
4 " Figure 5 Additional force at the 

bend of a fibre. 
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Figure 6 Diagram of the fracture energy W 'D as a function of the angle O, Example 1. 

After substituting all the previously obtained 
relations into Equation 6, the total energy is 
expressed by the following formula 

Wo 1D = NoDlve ~ ~'max COS20 

vqcos 0 + NoDrrc (Vo - Ve) -- I 2 _ 

2 TC ( ( X S ~  2 
+ NoD vozf ~ 0 cos 0 + NoD3fm I"1 

\ frd 

_ COS30~ 0 
x cos20 - Os-~O-nO ) + NoDlvo~dp s in~cos  0 

(7) 

The indices 1D and 0 recall that the energy is 
in the element reinforced with a I D system of 
parallel fibres inclined at an angle 0 to the direc- 
tion of tensile load. The number of  fibres is given 
by the formula 

4# 
N0 = reD= (8) 

where # is the volume fibre content. 
For  two examples of  sets of  parameters, the 

values of W0 m as functions of 0 are calculated 
from Equation 7 and the results are shown in 
Figs. 6 and 7. 

For  the calculations all numerical values of  
the parameters are taken from tests of steel fibre 
reinforced cements. These values are indicated in 
the legends of the figures. 

Among other conclusions it may be observed 
that the function W01D has an extremum and that 
it corresponds to a maximum. The  influence of 
different energy components is strongly depen- 
dent on the values of particular parameters. 

The necessary condition for the energy 
extremum is 

aw0 ID 
= 0 (9)  

a0 
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Figure 7 Diagram of the fracture energy W m as a function of the angle 0. Example 2. 

After substitution of  Equation 7 into Equation 
9 two conditions are obtained from Equation 7 

cos 0 = 0, (10) 
or 

7; 
4 Dl'Cmax ve sin 0 

v  ] inO 
+ ~ D2rrv0(1 - 0 tan 0) 

q-D3fm (~  f~-)2 r/ 

x {[(3 + cot20)0 -- cot 0] cos 0 -- 2 sin 0} 

( , 0  0 ) 
+ ~Dl~4)Vo ~cos ~ -- sin ~ tan 0 = 0. 

(11) 

Equation 10 only gives a trivial solution: 0 = 
re/2 which corresponds obviously to a minimum 
of W0 m, because all of  the fibres are not acting 
across the crack. The solution of  Equation 11 
was obtained by numerical methods for several 
sets of  parameters.  For  the example shown in 
Fig. 6 the optimal value, 0opt, is 35~ and 
for the example in Fig. 7 0opt = 15~ ". The 
optimal angle, 0opt, is considered below as a 
function of various parameters. 

4. O p t i m a l  v a l u e  o f  t h e  a n g l e  8 f o r  
1 D s y s t e m s  o f  f ib res  

Equation l l may be used to calculate optimal 
values of  the angle 0 designed by 0opt, as a 
function of various parameters. A few examples 
are given here for sets of  parameters  taken from 
tests of  steel fibre reinforced cement based 
composites. 
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Figure 8 Optimal angle 0op t as a function of the aspect ratio 1/D of a single fibre. 

For an aspect ratio, l/D, characterizing the 
shape of a single fibre, varying from 33 to 900, 
the angle 0opt decreases considerably (see Fig. 8). 
This means that for short and thick fibres 0opt is 
equal to about 43 to 46 ~ and for long and thin 
fibres the angle 0opt decreases to about 18 to 21 ~ 
Higher values correspond to stronger fibres with 
7jr = 250Nmm -2 and lower values to weaker 
fibres with zf = 105 N mm -2. It is assumed here 
that the relation exists between the shear yield 
stress zf and the tensile strength of steel ff is 

fr = 2"Cr- (12) 

The quality of the bond between fibres and 
matrix also has an important influence on the 
angle 0op  t .  Its value decreases when the bond 
stresses increase, as it is shown in Fig. 9. Values 
of 17ma x and z equal to 1.4 and 0 .4Nmm -2 
respectively correspond to plain fibres. The 
value of 2.6 and 1.6 N m m  -2 may be considered 
as appropriate for slightly indented fibres. The 
influence of the fibre shearing strength ~r is also 
observed: stronger fibres require higher values of 
0opt as it is shown in Fig. 10. This conclusion is 
confirmed also by results obtained previously 
shown in Fig. 8. 

The influence of the crack width, v0, defined 
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as a fracture of the element, is rather small as it 
is shown in Fig. 11: for v0 varying from 0.1 to 
1 mm the angle 0opt varies only from about 
34~ ' to 32~ ' . It may be verified also that the 
coefficients ~ and q~ do not influence consider- 
ably the angle 0opt. 

5. E n e r g y  a c c u m u l a t e d  in e l e m e n t s  
w i t h  2 D  and 3 D  s y s t e m s  o f  f i b r e s  

The results of optimization obtained above may 
be compared with energies absorbed in elements 
reinforced by fibres distributed at random in 
planar (2D) or in spatial (3D) systems. Corre- 
sponding formulae may be obtained by appro- 
priate integration of Equation 7 and the follow- 
ing expressions are found 

W 2D = 0.202642 ~ lv~r,,,x 

+ 0.405285 ~-z [l(v0 - re) -- 2(v02 - v~)] 

+ 0.5flVoZ f + O.086910Dflf mo t  t l 

+ 0.949641 D fl- lvoz~ (13) 
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Figure 9 Optimal angle Oom as a function of the 
band characteristics r and ~ma~. 

and 

B 
W3D = 0.125 5 IVeZmax 

+ 0.25 ~ ~[/(v0 - vo) - 2(v~ - v~)] 

( 
+ 0.5/~v0zr + 0 .084767/~Dr/ te~-~)f :  

+ 0.942809 ~ lvozC~. (14) 

Numerical values of energies calculated from 
Equations 13 and 14 for two different sets of  
parameters are shown in Figs. 6 and 7. It may be 
observed that in the case shown in Fig. 6 the 
element with dispersed fibres of  2D or 3D 
systems can absorb a considerably greater 
amount  of  energy than the element with all the 
fibres parallel to the direction of principal tensile 

stress. In the other case, represented in Fig. 7, 
parallel fibres ensure higher absorbed energy 
than any random system. The difference consists 
of a different selection of main parameters, such 
as qualities of  fibres and matrices. 

There are few test results published until now 
with enough data available to calculate the 
absorbed energy and to confirm the above 
analytical results. Only in the tests published by 
Kasperkiewicz [10] are necessary data given 
from which it may be calculated that 

Wo ID ~ 3W 2D. 

This means that the parallel fibre system with the 
angle 0 = 0 gives 3 times higher energy 
absorbed before the fracture than the fibres 
dispersed at random (2D). By these tests, the 
model presented in Fig. 7 is confirmed. Further 
experimental work in this field is planned to 
calculate energy as a function of  the angle 0 and 
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to check the above shown analytically obtained 
diagrams. 

6. Conclusions 
In the above described analytical considerations 
the optimal values of the angle 0 are determined 
and discussed as functions of several particular 
parameters. The numerical values of 0op t are 
obtained in several examples. The values of 
corresponding fracture energies in elements, 
reinforced with parallel fibres and with random 
fibres in 2D and 3D systems, are compared. 

It appears, for example, that for certain fibre 
and matrix properties, the fibres at angle 0 = 0 
give a smaller amount of absorbed fracture 
energy than the random 2D or 3D systems of 
fibres. 

The obtained solutions give valuable infor- 
mation about the influence of different par- 
ameters on the energy absorbed by the element 
before the fracture and about the correct choice 
of the reinforcement system. 

The proposed simplified model of an element 
subject to tension yields rather coherent results 
in optimization problems. Further studies are 
directed at considering a more realistic and com- 
plicated model of the material behaviour and at 
taking into account other parameters and design 
variables. Among others the influence of the 
multiple cracking will be considered. Exper- 
imental investigations should also be under- 
taken to give enough data for general checking 
of the proposed model. 
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